
Seven Crazy Goals to
Start You on Your ITSM
Journey to DevOps
You won‘t believe this one weird trick to make service
management agile

By Rob England

Seven Crazy Goals to Start You on Your ITSM Journey to DevOps

Introduction

2018 is the year for service management in DevOps. The echoes of “Ding! Dong! The wicked ITIL
is dead!“ are just fading in the DevOps and Agile community. But the DevOps world is increasingly
rediscovering the value of service management techniques, just as ITSM teams are adopting
DevOps principles and practices.

DevOps experts like Gene Kim have consistently defended the need for ITSM in a DevOps world,
and DevOps is coming around. When Google’s Site Reliability Engineering (SRE) deduced a metric
for reliability based on first principles, and they came up with... Unplanned Downtime. (Everybody
in ITSM rolls their eyes. Well, duh.)

And ITSM is accepting DevOps. The new ITIL Practitioner book and course by Axelos embrace
Agile concepts, and there is a rumored rewrite of ITIL coming. There is also a rising awareness in
ITSM of the Cynefin framework and how the world can’t all be standardized.

At last, ITSM is coming in from the cold. It‘s important to deploy products faster and better. It‘s
just as important to deliver its value over time. Here is a roadmap for one way to encourage that
crossover in your ITSM organization.

https://www.axelos.com/certifications/itil-certifications/itil-practitioner-level
https://itsm.tools/2017/11/14/the-value-of-the-cynefin-framework-to-itsm/
https://itsm.tools/2017/11/14/the-value-of-the-cynefin-framework-to-itsm/

3Seven Crazy Goals to Start You on Your ITSM Journey to DevOps

Set a crazy goal. It’s OK to fail

Create a culture where people feel safe to fail, where

they understand that experimentation is essential in

order to move forward. Not a major catastrophic failure,

of course. It means to fail fast, fail small, fail early, fail

often—to gain quick feedback and change course if

necessary.

One way to experiment is to set stretch goals that might

seem a little crazy at first. Tell your service management

friends that DevOps is a new world where they can be

adventurous and curious, with the right environment

and controls. Startle people out of their day-to-day life

and make them cry, “Impossible!” And answer back,

“Unless….?”

Make these goals SMART: specific, measurable, achievable,

relevant, and time-bound. Write them as a user story with

defined acceptance criteria and a milestone date.

Stretch goals rally and energize early adopters. As

success draws closer, even skeptics want to get onboard.

Here are seven suggested crazy goals:

1 Make performance testing a
 parallel control instead of
 a serial one
Set up a parallel performance environment so that

developers can test code at will instead of waiting for

a single monolithic performance test at the end of their

work when any feedback is too late.

Create automation so they can submit packages

of code for execution and get immediate feedback

on performance metrics. Extra points if you give

them comparative metrics from the previous run.

This encourages developers to iteratively tune the

performance of code instead of taking a blind guess.

Organizations have set this up with astonishing speed

even in complex legacy environments, with automated

tools for developers to submit tests and see results.

Integrate testing and monitoring tools to enable the flow

of information.

The role of test engineers then shifts from working

through a backlog of testing requests to building and

maintaining automation and watching the results to

identify teams who need special help or issues with

infrastructure performance.

2 Collect data to support
 problem management
Some documentation is only “documentation theatre.”

Nobody ever uses it again. Find out if and when it is

ever opened.

Often it’s just a glorified checklist of items to be

completed at a critical stage gate. Why not just use

an actual checklist? Checklists are the low-hanging

fruit in terms of reducing levels of ceremony and

optimizing controls.

4Seven Crazy Goals to Start You on Your ITSM Journey to DevOps

Other documentation is indeed essential but you should

look for a way to store the information in the machine

instead of transcribing it manually. In other words, your

automated systems of source control or migration

or testing include all the necessary information. For

example, do we really need release notes when all the

information is in Jira? If we move to test-driven design,

can we eliminate many written requirements and use the

test scripts themselves?

One major target for reducing documentation is the

CMDB. In ITSM parlance, a CMDB is a static repository

to which information needs to be manually and

automatically written. Its ROI is often debatable. In a

DevOps context, the configuration database becomes the

active definition of the environments, so data flows from

it, not to it, and it is by definition correct. It is used to

drive our system, not to record it after the fact.

3 Kill a CAB
 (Change Advisory Board)
Some organizations have multiple CABs at the technical,

business, and operational levels. Many CABs can only

be described as dysfunctional: reading out a litany of

60 changes to 30 bored disengaged people. If it is just

“theatre” to reassure management, if the very idea of

going to a CAB makes everybody lose the will to live, then

get rid of the CAB. Find sufficient other ways to ensure

that risk is managed so that the bizarre ritual is no longer

required. Identify what value the CAB delivers, if any.

 Identifying risk. Apply the Shift Left principle

and find better ways to identify risks earlier in

the process. Turn to a trusted peer instead of 30

strangers and a five-minute discussion. It is pure

theatre.

 Assuring quality. Again, Shift Left to build quality,

security, and compliance into the process. For

example, Continuous Testing based on extensive

test automation eventually eliminates many

external assurance functions

 Communication mechanism. Look at tools such

as social media, and especially the ability to

subscribe to configuration items through ChatOps

 Approval. This is dysfunctional at the core: the

“A” is for “Advisory.” Usually, it comes to this

because the team creating the change refuses

accountability, so the CAB provides a way to

distribute accountability

4 Enable developers to create
 a test environment at will,
 cloned from production
If it takes weeks to handcraft a test environment, it is a

major bottleneck to development. Again, it is low-hanging

fruit to provide automated request mechanisms for

developers to be provisioned immediately with the server,

database, storage, and network resources they need to

get started.

If a test environment is not identical to production,

then what is even the point of testing in it? The primary

purpose of testing is not to find defects: the purpose of

testing is to reassure us that it will work in production.

Dynamically create copies of production on demand

for testing. Tools exist to obfuscate data and to create

virtual images of production that do not require massive

amounts of storage.

5Seven Crazy Goals to Start You on Your ITSM Journey to DevOps

For many organizations, their initial entry point to

the cloud is to provide transient resources for test

environments in order to accommodate on-demand

requests for large production-like systems. When they

experience the low cost, responsiveness, and integrity of

those systems, then the use of the cloud starts to spill

into other practices such as development and eventually

production. It is the thin end of the wedge.

5 Automate change approval
 of a product
For every person who needs to approve the change, ask

what controls she would need to see in order to no longer

approve, then find a way to automate those or render

them obsolete.

Any change manager should be able to provide such a

checklist, although it is often an interesting exercise for

them to do it.

Likewise, it is equally enlightening to ask people why

they are approving. It is not unusual to find that they

never wanted to. They are happy to be relieved of

accountability which they never felt they owned.

Shift Left as many approvals as possible. Peer approval

of change is one of the strongest predictors of IT

performance. Similarly, business approval of change

should happen before it is done, not after. If we agreed

to make the change at the start of a sprint, we shouldn‘t

need approval again at the end. The need for final

business approval of change stems from the days when

we went away for a year or two.

For the remaining approvals. we try to automate the

rule base for approval criteria. If we can‘t automate

the approvals, we can at least semi-automate them by

providing single-click emails or similar messages, or

review queues in ticketing tools.

Organizations talk about “virtual CABs” which never need

to actually meet.

6 Set a product‘s deployment
 window for 2 pm on a weekday
Why do we deploy at 4 a.m. on a Sunday morning when

it would be so much safer to deploy during work hours

when all the essential people are there watching the

consoles? Impossible unless... What would it take to be

able to deploy on a weekday? What level of automation

and quality would be necessary?

You would need to find a way to decouple deployment

from release so that code could be live but not yet

provisioned to users. Then you can deploy frequently

and incrementally while the business is free to pull

functionality in a business release on any scale or

cadence they desire.

It doesn’t mean you have to be Netflix, but you don’t

have to white-knuckle it every time either. Deployments

should be so automated, tested, and reliable that they

are a mundane, boring event. This is classic DevOps

Continuous Delivery practice.

7 Automate provisioning of
 users to a service

In order to have such decoupling between deployment

and release, you need to make it as easy as possible to

provision users to a new deployment.

https://continuousdelivery.com/2014/06/the-2014-state-of-devops-report-is-here/
https://continuousdelivery.com/2014/06/the-2014-state-of-devops-report-is-here/
https://continuousdelivery.com/

6Seven Crazy Goals to Start You on Your ITSM Journey to DevOps

The business should be able to release deployed code to

groups of users at will, i.e. they pull, we don’t push.

To do this, provisioning users to a release should be

automated in such a way that we can push and they

can pull. The ideal approach is user profile configuration

parameters, but we can achieve limited versions of the

same result with feature flags, blue/green environments,

and even clunky staged releases from pre-production to

production. Good provisioning enables canary releases,

beta testing, A/B testing, releasing by timezone or

business unit, and incrementally increasing the user

numbers.

If you don‘t think these goals are crazy, you‘re a unicorn.

Happy flying. We horses salute you. For the rest of

us, these goals should be sufficiently crazy to get the

attention of everybody and to act as proof points of the

effectiveness of DevOps if and when we succeed at

them.

7Seven Crazy Goals to Start You on Your ITSM Journey to DevOps

Understand the implications

Unpack the implications of the goal: “Impossible, unless…?”. Work your way back from it until you arrive at some

requirements which you can begin to work on now.

In general, in order to Shift Left, you need to improve the rest of the system until the control looks ridiculous/

superfluous because it is no longer necessary. In other words, we should build in earlier practices, tools, and

controls to improve quality to the point where the control is no longer performing any useful functions, is no longer

“trapping” poor quality or preventing risks. For example, look at Continuous Integration as a development discipline, or

movements such as DevSecOps and Rugged Software.

Providing new capabilities such as copies of production often raises strange political objections. For example,

“developers are not allowed to see production data for testing,” and yet at least one has a production sign-on for

debugging purposes. They all signed some form of confidentiality agreement when they joined the organization, so

treat them like they are on your side and get out of the way: IT must move from “default access none” to “default

access all.”

Just do it

Once we identify some immediate requirements, and once we put sufficient controls in place to protect the integrity of

the systems, then we must avoid analysis paralysis. The IT obsession with perfection creates the “define once, execute

perfectly” fallacy, which stems from our belief that we are creating simple systems. We aren’t; we are creating complex

systems. The only way to move forward in a complex system is to iterate, increment, explore, and experiment. You

must generate observational data to understand what to do next.

And so we embark on continual iterative experimentation and exploration as we incrementally improve our way to our

initial requirements and eventually our crazy goal. Plan only enough to start, then get going because your plans will

always change. Planning is essential but plans are expendable.

http://www.devsecops.org/
https://www.ruggedsoftware.org/

8Seven Crazy Goals to Start You on Your ITSM Journey to DevOps

Success factors

DevOps makes you better and faster, but nobody said it

was easier.

Here are the success factors to enable you to do crazy

things. As prerequisites, it would be useful to have:

 Executive support or at least curiosity

 Management understanding of Agile principles at

all levels up to ownership of the artifacts you are

changing (so they don’t think you are mad)

 An appetite for change amongst those doing the

work

 A culture that empowers those doing the work to

design the work

 Governors who are beginning to understand the

different attitudes to risk in an Agile enterprise, or

who at least accept that there are alternate ways

to deliver the same risk outcomes

 An Agile approach to changing practices. Agile

Service Management is a thing

Perhaps the most critical success factor is
expectation setting:

 Zero risk means zero experiment, and zero

experiment means zero innovation. Everyone in

the organization up to the highest levels must

understand that if we are ever to move forward we

will occasionally go wrong, and that this is the cost

of that movement. After all, it is demonstrably true

that locking everything down does not result in

zero errors. This is the fallacy of robust systems

 You may never reach these crazy goals you set

yourself. The agile way of working is to iterate

towards a goal, deploying incremental success

along the way, sometimes abandoning the idea

completely or pivoting to an alternative idea

 The real value is not what you achieve. The value

is in the journey of attempting it, and what you

learn about new ways of working: new attitudes to

working which embrace experimentation, failure,

and curiosity. You may not get where you were

going, but you will be in a better place than you

are today. If you can say that it will be better in a

year—that you will achieve better results and have

a better time doing it—then you know you work for

a learning organization with a culture of continual

improvement

9Seven Crazy Goals to Start You on Your ITSM Journey to DevOps

Technical Notes

You may have noticed an emphasis on automation. Automate testing. Automate sharing data. Automate cloning

production environments.

You may have also noticed an emphasis on Shift Left. Approve processes earlier. Test earlier. Fix problems earlier.

Finally, you may have noticed an emphasis on sharing data. Share testing data. Share process status. Share

monitoring Alerts.

These are the linchpins of modern IT operations. They require business alignment first and foremost, of course, and

then they require deep system integrations to make data available when and where people need it. From monitoring

tools to service desk systems, and from ChatOps tools to issue management solutions, collaboration relies on data

sharing as much as it does on traditional forms of communication.

About the author

Rob England B.Sc., MIITP, CITP is an independent IT management consultant, trainer, and commentator based in

Wellington, New Zealand. Rob is an internationally-recognized thought leader in IT Service Management (ITSM) and

a published author of seven books and many articles, best known for his controversial blog and alter-ego, the IT

Skeptic. He speaks regularly at international conferences. In 2005 Rob founded his company, Two Hills, with the motto

“Sensible Business Practices.”

Read Rob’s books: http://www.twohills.co.nz/books

Visit Rob’s blog: http://www.itskeptic.org/

http://www.twohills.co.nz/books
http://www.itskeptic.org/

10Five Best Practices to Automate Major Incident Management

About xMatters

xMatters is a service reliability platform that helps

DevOps, SREs, and operations teams rapidly deliver

products at scale by automating workflows and ensuring

infrastructure and applications are always working. The

xMatters code-free workflow builder, adaptive approach

to incident management, and real-time performance

analytics all support a single goal: deliver customer

happiness. Over 2.5 million users trust xMatters daily at

global companies and innovative challengers including

BMC Software, Credit Suisse, Danske Bank, DXC

Technology, Experian, NVIDIA, ViaSat and Vodafone.

xMatters is headquartered in San Ramon, California and

has offices worldwide.

Copyright 2021 xMatters. All rights reserved. All other products and brand names are trademarks
or registered trademarks of their respective holders.

xmatters.com

